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Abstract

Purpose — The purpose of this paper is to study the conjugate heat transfer via natural convection
and conduction in a triangular enclosure filled with a porous medium.
Design/methodology/approach — Darcy flow model was used to write governing equations with
Boussinesq approximation. The transformed governing equations are solved numerically using a
finite difference technique. It is assumed that the enclosure consists of a conducting bottom wall of
finite thickness, an adiabatic (insulated) vertical wall and a cooled inclined wall.

Findings — Flow patterns, temperature and heat transfer were presented at different dimensionless
thickness of the bottom wall, /2, from 0.05 to 0.3, different thermal conductivity ratio between solid
material and fluid, &, from 0.44 to 283 and Rayleigh numbers, Ra, from 100 to 1000. It is found that
both thermal conductivity ratio and thickness of the bottom wall can be used as control parameters
for heat transport and flow field.

Originality/value — It is believed that this is the first paper on conduction-natural convection in
porous media filled triangular enclosures with thick wall. In the last years, most of the researchers
focused on regular geometries such as rectangular or square cavity bounded by thick wall.
Keywords Heat transfer, Porous materials, Heat conduction, Convection, Numerical analysis
Paper type Research paper

Nomenclature

g = gravitational acceleration T = temperature

h =dimensionless height of the 4 4  =velocity componentsinz,y
solid wall, ' /H directions

n = height of solid wall U,V =dimensionless velocity

H  =height of triangle or cavity components in X, Ydirections

K =permeability of the porous &  =Cartesian coordinates
medium X, Y =non-dimensional coordinates

k = thermal conductivity ratio, ky/ks

L = length of the bottom wall, L = H
= coordinate in normal direction

Nu  =mean Nusselt number
Nu, =local Nusselt number
Ra  =Rayleigh number

Greek letters

O = thermal diffusivity of the
porous medium

Ié] = thermal expansion
coefficient



0 =non-dimensional temperature Subscripts

v = kinematic viscosity C =cold

P = stream function f =flud

g =non-dimensional stream H =hot
function s —solid

Introduction

Transport of heat through a porous medium has been the subject of various recent studies
due to the increasing need for a better understanding of the associated transport processes.
This interest stems from the numerous practical applications which can be modeled or can
be approximated as transport through porous media such as packed sphere beds, high
performance insulation for buildings, chemical catalytic reactors, grain storage, migration
of moisture through the air contained in fibrous insulations, heat exchange between soil and
atmosphere, sensible heat storage beds and beds of fossil fuels such as oil shale and coal,
salt leaching in soils, solar power collectors, electrochemical processes, insulation of nuclear
reactors, regenerative heat exchangers and geothermal energy systems and many other
areas. Literature concerning convective flow in porous media is abundant. Representative
studies in this are may be found in the recent books by Nield and Bejan (2006), Ingham and
Pop (2005), Vafai (2005), Pop and Ingham (2001), Ingham et al (2004) and Bejan et al. (2004).
In conventional heat transfer analyses, it is common practice to consider the
temperature or the heat flux at the fluid-wall interface as known a priori. The results thus
obtained are good only for heat transfer in flows bounded by walls having extremely small
thermal resistance, ie. very high thermal conductivity and/or very small thickness.
However, in actual practice, the wall thermal resistance is finite and the thermal conditions
at the fluid-wall interface are different from their counterparts imposed at the outer surface
of the solid walls. Such type of problems, where heat conduction in the solid is coupled
with convective heat transfer in the fluid, is often referred to as conjugate problems (El-
Shaarawi et al., 2007). Most of the studies on natural convection in triangular enclosures
filled with a fluid-porous media include thin walled triangular cavity by Baytas et al.
(2000), Varol et al. (2006, 2007a, b, 2008), Bejan (1979), Poulikakos and Bejan (1983) and
Vasseur and Degan (1998). However, studies on the effect of wall conduction in a triangular
porous cavity with conducting solid walls of finite thickness are very limited. The results
of such studies can be used in building physics, electronic cooling applications etc. Kimura
et al (1997) presented a review study to show different applications of conjugate
convection for porous medium. Mbaye ef al (1993) studies the natural convection—
conduction problem for a rectangular porous cavity to investigate the effect of Rayleigh
number and conductivity ratio on thermal and flow field. Baytas ef al (2001) made a
numerical analysis to solve conjugate natural convection problem in a square enclosure
filled with a fluid-saturated porous medium. Chang and Lin (1994) studied the conduction-
natural convection problem for non-Darcian porous media. Mohamad and Rees (2004)
studied the conjugate effects on natural convection from a heated vertical flat plate
embedded in a porous medium. Recently, Saeid (2007a) made a numerical study to
investigate the effect of conduction in one of the vertical wall in conduction-natural
convection problem in a porous square enclosure. He observed that either increasing the
Rayleigh number and the thermal conductivity ratio or decreasing the thickness of solid
bounded wall can increase the average Nusselt number. In the special cases of low
Rayleigh number and high conductive walls, the values of the average Nusselt numbers
are increasing with the increase of the wall thickness. The problem of conjugate natural
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convection in a vertical porous layer sandwiched by finite thickness walls has been also
considered (Saeid, 2007b). He used the Darcy law model in the mathematical formulation
for the porous layer and the finite volume method to solve the dimensionless governing
equations. He found that as Ra increases the average Nusselt number is increasing with
higher slop for the thin walls than that for thick walls. It is worth mentioning to this end
that the coupling of wall conduction with natural convection in rectangular enclosures
filled with a Newtonian fluid (non-porous media) has been studied by several authors,
such as Koutsoheras and Charters (1977), Meyer ef al. (1982), Kim and Viskanta (1984,
1985), Kahveci (2007) and Du and Bilgen (1992). These studies were motivated by many
engineering applications in electrical, nuclear, thermal storage fields and electronic cooling
applications. Heat producing electronic components are often mounted on a printed circuit
board above a conducting plate. The heat produced is then transferred, both by conduction
through the plate to its two ends and by natural convection in the surrounding fluid to the
heat sinks. As a result, the heat removing rate from the electronic components will depend
on the coupling of the wall conduction and the fluid convection. This coupling will directly
influence the temperature distribution among the components and thus the design of heat
removing mechanisms in practical applications (Du and Bilgen, 1992).

The principal aim of the present study is to examine the problem of conduction-
natural convection in a triangular enclosure filled with a fluid-saturated porous
medium which consists of a conducting bottom wall of finite thickness. Above
literature survey clearly shows that conjugate natural convection problems for
triangular enclosure are not studied yet. Thus, we believe that the present results are
new and very important for some practical applications.

Problem description

The configuration of the right-angle porous triangular enclosure with a conducting
thick bottom wall is given in Figure 1(a) along with boundary conditions and
coordinates. The thickness of the conducting bottom wall is denoted by 4’ and it is a
solid wall made from different materials. The cavity is heated from the bottom wall
with an isothermal heater and temperature of the inclined wall is lower than that of the
bottom wall. The vertical wall of the enclosure is insulated.

Mathematical model

In order to write the governing equations for the problem under consideration the
following assumptions are made: the properties of the fluid and the porous medium are
constant; the cavity walls are impermeable; the Boussinesq approximation and the
Darcy law model are valid. With these assumptions, the dimensional governing
equations as continuity, momentum and energy can be written as follows

ou v

2 1
c')x+8y 0 (1)

ou_ou__goKoT, o
dy dx v Ox
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where # and v are the velocity components along x and y axes, Ty is the fluid
temperature, g is the acceleration due to gravity, 7 is the temperature of the solid
bottom wall, K is the permeability of the porous medium, «, is the effective thermal
diffusivity of the porous medium, 3 is the thermal expansion coefficient and v is the
kinematic viscosity. Introducing the stream function ¢ defined as

x K

M:a—y, U——a

(5)
Equations (1)-(4) can be written in non-dimensional form as

PU O a0;
axz e = Regy (6)

oudH ovoh o oo )
oY 90X 0X0oY 0X%2 0Y?

for the fluid-saturated porous medium and

s | b, _
oxz " av?

0 (8)

for the solid wall, respectively. Here Ra = g 8K (Ty — T¢) H/ v is the Rayleigh
number for the porous medium and the non-dimensional quantities are defined as

H
x=2 y=2 (U,V):(“’U) , oY
H H Qy Qpy )
g Li=Tc , _T-Tc
I T Ty —Te T Ty —Te

The boundary conditions of Equations (6)-(8) are: for all solid boundaries
v =0 (10a)

on the vertical wall (adiabatic),0 < Y <1

00y 005
= ax =" (10b)
on the bottom wall (hot), 0 < X <1
0 = 6, = (10c)

on the inclined wall (cold)

6 =0,=0 (10d)



for the interface between solid and porous media,

00¢ 00
ky W ks W (10e)
In above boundary condition, the total heat flux ¢, is assumed to have the same
representation as the case of local thermal equilibrium. In other words, it is assumed that
both phases have the same temperature and temperature gradient at the wall as indicated
by Alazmi and Vafai (2002). Physical quantities of interest in this problem are the local
Nusselt number N, at the fluid side and the mean Nusselt number Nu which are given by

lx

Nu, — <_ 59f> Nu— % JNude (11a,b)
Y=h x
0

and also the Nusselt number N, at the solid part

s = <_ gi;) Y=h "

for the interface between the solid bottom wall and porous medium. Based on Equation
(10e) the following relation must be satisfied between Nu, and Nu, as Nu, = (ks / kf)NMs
(Saeid, 2007a). Thus, one can determine the value of the Nusselt number for the solid part
of the interface.

Numerical technique

Equations (6)-(8) subject to the boundary conditions (10) are integrated numerically
using the finite-difference method. Numerical simulations were carried out
systematically in order to determine the effect of three main parameters of the problem,
namely: Rayleigh number Ra, thermal conductivity ratio % and thickness of the solid
bottom wall 22 (= 2'/H) on the flow and heat transfer characteristics. The solution
domain, therefore, consists of grid points at which equations are applied. The grid size
was selected to be similar to that used by 61x61 for the cavity with uniform grid
spacing. Figure 1(b) reveals clearly the grid arrangement. The resulting algebraic
equations were solved by successive under relaxation method. The iteration process is
terminated under the following condition:

m _ m—1
i, i
i,j 0j

where 7 denotes the iteration step and ¢ stands for either 6y, 6, or W. Due to lack of
suitable results in the literature pertaining to the present configuration, the obtained
results have been validated against the existing results for a square cavity filled with a
porous medium. Thus, the comparison of the present results for the mean Nusselt
number Nu, as defined by Equation (11), with those from the open literature has been
made for a value of Re = 1,000. Comparison results can be found in our earlier
publications as Varol et al. (2006, 2008).

<107° (13)
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Table 1.

Values of the thermal
conductivity ratio
(Ruocco, 1997)

Results and discussion

First, we tested the effects of the Rayleigh number Ra on both the temperatures of the
fluid-saturated porous medium and of the solid bottom wall as well as on the flow field
in the case of epoxy-water (¢ = 0.44) when 22 = 0.1. Four different solid materials and
fluids are chosen according to ratio of thermal conductivity % given in Table 1. Thus,
Figure 2(a)-(c) shows the effects of Ra on streamlines and isotherms. As can be seen in
Figure 2(a) a circle-shaped single rotating cell was obtained and it rotates in clockwise
direction with ¥,,;, = —2.19. It can be also seen that the shape of the cell is deformed
with increasing Ra and that the flow strength increases. Isotherms show that the
temperature distribution is uniform in the solid bottom wall for all values of Ra. For low
values of Ra, isotherms are almost parallel to the cold inclined surface due to domination
of the conduction mode of heat transfer. However, the isotherms are also distorted with
increasing Ra, namely, the convection effects. Figure 3 illustrates the effects of the wall
thickness parameter % for Ra = 500 and %2 = 0.44 on the temperature distributions and
flow fields inside the porous cavity and inside the bottom solid wall. As can be seen the
parameter /2 also affects the fluid and the solid temperatures as well as the flow
characteristics. The strength of the circulation of the fluid-saturated porous medium is
much higher for a thin bottom wall. This has been found also by Saeid (2007b). Thus,
more fluid is heated in the cavity thanks to the conducting solid bottom wall.

The streamlines (on the left) and isotherms (on the right) are shown for some values
of the thermal conductivity ratio parameter % in Figure 4(a)-(c) for Ra = 500 and
h = 0.2. To this test, three different materials as epoxy-air (¢ = 9.90), stainless steel-
water (k = 23.8) and alumina-water (k¢ = 283) were used as given in Table I. As can be
seen from these figures the higher values of Z enhances the flow strength. The reason of
this phenomenon is that the temperature gradient near the wall increases with the
increase of the parameter k. Thus, much heat transfer from the bottom solid wall to the
porous media is obtained for higher values of k. Figure 4(a)-(c) also shows that
convection effects inside the porous medium become stronger for higher values of %.
For alumina-water (¢ = 283), second cell is formed near the right bottom corner of the
porous cavity. Similarly, the most part of the solid bottom wall is heated for higher
values the thermal conductivity parameter £.

Variation of the mean Nusselt number Nu with Ra, which is calculated from
Equation (11), is illustrated in Figure 5 for £ = 0.44 (epoxy-water) to show the effects of
the wall thickness parameter / on heat transfer. The figure shows that for low values of
h the heat transfer increases with increasing Ka. This is due to increasing of
domination of convection heat transfer inside the porous media. Figure 5 also shows
that Nu becomes constant for highest values of the thickness parameter of the solid
bottom wall (2 = 0.3). Variation of Nu with Ra is shown in Figure 6 for # = 0.2 and
some values of k. It can be noticed from this figure that higher values of Nu are
obtained with increasing the parameter k. Thus, there is a considerable difference
between the values of Nu for small and large values of %. This is because the convection
nside porous medium increases. For £ = 23.8, the mean Nusselt number increases with
increasing Ra due to increasing of convection dominated heat transfer regime. At low

Epoxy-water Epoxy-air Stell-water Alumina-water

k 0.44 9.90 238 283
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Figure 4.
Streamlines (on the left)
and isotherms (on the
right) for 2 = 0.2 and
Ra = 500: (a) epoxy-air
(B = 9.90); (b) still-water
(k = 23.8); (c) alumina-
water (k = 283)
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Figure 5.

Variation of the mean
Nusselt number as a
function of Rayleigh
number for different
thickness ratio of the
bottom wall at epoxy-
water (k= 0.44)

Figure 6.

Variation of the mean
Nusselt number as a
function of Rayleigh
number for different
conductivity ratios at
h=02

Figure 7.

Variation of the mean
Nusselt number as a
function of conductivity
ratio for different
Rayleigh numbers at
h=02

values of % the values of Nu are almost constant. Figure 7 is plotted to show the
variation of Nu with k& for some values of Ra when & = 0.2. As can be seen, the values
of Nu increases with increasing Ra except for lower values of thermal conductivity
ratio parameter k. The values of Nu are increased suddenly for 2 > 1 due to effect of
conduction. In this case the bottom solid wall behaves as insulated material. For higher
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value of % the convection heat transfer becomes much more important. Variation of Nu
with X, the dimensionless distance measured along the lower surface of the bottom
solid wall, is presented in Figure 8 for different values of Ra when % = 0.05 and
k = 0.44. It can be noticed that Nu increases with the increase of X. However, when
Ra =1,000 it decreases sharply around X = 0.58 due to Benard-cell type of flow.
A similar result was obtained in earlier studies on non-conjugate natural convection
flow in triangular enclosures filled with porous media. Variation of Nu with X is
llustrated in Figure 9 for some values of 7 when Ra = 1,000 and %2 = 0.44. It is
observed that higher values of Nu are obtained for lower values of /. However, Nu
remains almost constant for the values of /. considered except the value of 2 = 0.05.
Thicker solid wall behaves as insulation material independent of values of k. In this
case, convection effects become dominant and Benard-cells were formed. Finally, the
effects of thermal conductivity ratio % on the local Nusselt number Nu is displayed in
Figure 10 for Ra =1,000 and % = 0.1. As this figure suggests Nu remains almost
constant and has the lower value for £ = 0.44, where the solid wall is an insulation
material. This finding is supported by the results reported by Saeid (2007b). For higher

h=0.05

6-
5 .
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3 3
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] - Ra = 1000
0 T T T T
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Figure 8.

Variation of the local
Nusselt number for
different Rayleigh
numbers at Epoxy-water
(k= 0.44) and = 0.05

Figure 9.

Variation of the local
Nusselt number for
different thickness ratios
of the bottom wall at
Epoxy-water (¢ = 0.44)
and Ra =1,000
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Figure 10.

Variation of the local
Nusselt number for
different conductivity
ratios at Ra = 1,000 and
h=01

k=044

20 4| =k=990

=k =238

values of % the local Nusselt number shows wavy variation due to strong convection.
The similar results were shown in earlier studies by Varol et al. (20073, b).

Conclusions

A numerical study is performed to examine the steady laminar natural convection—
conduction in triangular enclosure filled with fluid-saturated porous media with a
conducting bottom solid wall for different Rayleigh number, thickness of the bottom
wall and thermal conductivity ratio. It is found that the flow strength becomes lower
for thin wall or low values of thermal conductivity ratio. It is also found that increasing
of thick wall, reduces the mean Nusselt number due to decreasing of temperature
difference. For the constant wall thickness and thermal conductivity ratio, Nusselt
number increases with increasing of Rayleigh number. For thin wall and high Rayleigh
number wavy variation was observed in the local Nusselt number due to increasing of
convection effects. Values of thermal conductivity parameter % are effective for 2 > 1.
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